Los microbios del ántrax pueden ayudar a calmar el dolor, según científicos de Harvard / Research suggests role for anthrax in fighting pain

Un estudio en ratones con el peligroso microbio tuvo efectos analgésicos. Los especialistas creen que los hallazgos permitirán desarrollar alternativas al uso de opioides

La enfermedad de ántrax tiene una reputación aterradora. Ampliamente conocida por causar infecciones pulmonares graves en humanos y lesiones cutáneas antiestéticas, aunque indoloras, en ganado y personas, la bacteria que provoca ántrax incluso se ha utilizado como arma en el pasado.

Ahora, los hallazgos de un nuevo estudio sugieren que el temido microbio también tiene un potencial beneficioso inesperado: una de sus toxinas puede silenciar múltiples tipos de dolor en los animales.

La investigación revela que esta toxina de ántrax específica funciona para alterar la señalización en las neuronas sensibles al dolor y, cuando se administra de manera específica en las neuronas del sistema nervioso central y periférico, puede ofrecer alivio a los animales en peligro. El trabajo, dirigido por investigadores de la Escuela de Medicina de Harvard en colaboración con científicos de la industria e investigadores de otras instituciones, se publicó en Nature Neuroscience.

En su trabajo, el equipo combinó partes de la toxina del ántrax con diferentes tipos de cargas moleculares y las administró a las neuronas sensibles al dolor. La técnica se puede utilizar para diseñar nuevos tratamientos dirigidos con precisión que actúen sobre los receptores del dolor, pero sin los efectos sistémicos generalizados de los medicamentos actuales para aliviarlo, como los opioides.

“Esta plataforma molecular de usar una toxina bacteriana para administrar sustancias en las neuronas y modular su función representa una nueva forma de atacar las neuronas mediadoras del dolor”, afirmó el investigador principal del estudio, Isaac Chiu, profesor asociado de inmunología en el Instituto Blavatnik de la Escuela de Medicina de Harvard.

“La necesidad de expandir el arsenal terapéutico actual para el manejo del dolor sigue siendo aguda”, señalaron los investigadores en su estudio. Los opioides siguen siendo los analgésicos más efectivos, pero tienen efectos secundarios peligrosos, sobre todo su capacidad para reconfigurar el sistema de recompensa del cerebro, lo que los hace altamente adictivos, y su propensión a suprimir la respiración, lo que puede ser fatal. “Todavía existe una gran necesidad clínica de desarrollar terapias para el dolor no opioides que no sean adictivas pero que sean efectivas para silenciar el dolor, dijo la primera autora del estudio, Nicole Yang, investigadora del HMS en inmunología en el Laboratorio Chiu.

Nuestros experimentos muestran que una estrategia, al menos experimentalmente, podría ser apuntar específicamente a las neuronas del dolor usando esta toxina bacteriana”. Sin embargo, los investigadores advierten que, por ahora, este enfoque sigue siendo puramente experimental y aún debe probarse y perfeccionarse en más estudios con animales y, eventualmente, en humanos.

Los investigadores del laboratorio de Chiu se han interesado durante mucho tiempo en la interacción entre los microbios y los sistemas nervioso e inmunológico. El trabajo anterior dirigido por Chiu ha demostrado que otras bacterias que causan enfermedades también pueden interactuar con las neuronas y alterar su señalización para amplificar el dolor. Sin embargo, solo un puñado de estudios hasta ahora ha analizado si ciertos microbios podrían minimizarlo o bloquearlo. Esto es lo que Chiu y Yang se propusieron hacer en este nuevo trabajo.

Para el estudio actual, comenzaron tratando de determinar cómo las neuronas sensibles al dolor pueden ser diferentes de otras en el cuerpo. Para hacerlo, primero recurrieron a los datos de expresión génica. Una de las cosas que les llamó la atención fue que las fibras del dolor tenían receptores para las toxinas del ántrax, mientras que otros tipos de neuronas no los tenían. En otras palabras, las fibras del dolor estaban preparadas estructuralmente para interactuar con la bacteria del ántrax. En esta instancia se preguntaron por qué. Los hallazgos demuestran que el silenciamiento del dolor ocurre cuando las neuronas sensoriales de los ganglios de la raíz dorsal, los nervios que transmiten las señales de dolor a la médula espinal, se conectan con dos proteínas específicas producidas por la propia bacteria del ántrax.

Los experimentos revelaron que esto ocurre cuando una de las proteínas bacterianas, el antígeno protector (PA), se une a los receptores de las células nerviosas y forma un poro que sirve como puerta de entrada para otras dos proteínas bacterianas, el factor de edema (EF) y el factor letal (LF), para ser transportado a la célula nerviosa. La investigación demostró además que la PA y la EF juntas, conocidas colectivamente como toxina del edema, alteran la señalización dentro de las células nerviosas, lo que en efecto silencia el dolor.

En una serie de experimentos, los investigadores encontraron que la toxina del ántrax alteró la señalización en las células nerviosas humanas en el laboratorio, y también lo hizo en animales vivos. La inyección de la toxina en la parte inferior de la columna vertebral de los ratones produjo potentes efectos de bloqueo del dolor, lo que impidió que los animales sintieran estímulos mecánicos y de alta temperatura. Es importante destacar que los otros signos vitales de los animales, como la frecuencia cardíaca, la temperatura corporal y la coordinación motora, no se vieron afectados, una observación que subrayó que esta técnica era altamente selectiva y precisa para atacar las fibras del dolor y bloquear el dolor sin efectos sistémicos generalizados.

Además, inyectar a los ratones la toxina del ántrax alivió los síntomas de otros dos tipos de dolor: el dolor causado por la inflamación y por el daño de las células nerviosas, que a menudo se observa después de una lesión traumática y ciertas infecciones virales como el herpes zoster o la culebrilla, o como una complicación de la diabetes y el tratamiento del cáncer. Además, los investigadores observaron que a medida que el dolor disminuía, las células nerviosas tratadas permanecían fisiológicamente intactas, un hallazgo que indica que los efectos de bloqueo del dolor no se debían a una lesión de las células nerviosas, sino a la alteración de la señalización en su interior.

En un paso final, el equipo diseñó un vehículo transportador a partir de proteínas de ántrax y lo utilizó para administrar otras sustancias que bloquean el dolor en las células nerviosas. Una de estas sustancias era la toxina botulínica, otra bacteria potencialmente letal conocida por su capacidad para alterar la señalización nerviosa. Ese enfoque también bloqueó el dolor en los ratones. Los experimentos demostraron que este podría ser un nuevo sistema de administración para combatir el dolor. “Tomamos partes de la toxina del ántrax y las fusionamos con la carga de proteínas que queríamos que entregara, dijo Yang. En el futuro, se podría pensar en diferentes tipos de proteínas para ofrecer tratamientos específicos”.

Los científicos advierten que a medida que avanza el trabajo, la seguridad del tratamiento con la toxina debe monitorearse cuidadosamente, especialmente dado que la proteína del ántrax ha estado implicada en la alteración de la integridad de la barrera hematoencefálica durante la infección.

Los nuevos hallazgos plantean otra pregunta interesante: evolutivamente hablando, ¿por qué un microbio silenciaría el dolor? Chiu cree que una explicación muy especulativa, puede ser que “los microbios hayan desarrollado formas de interactuar con su huésped para facilitar su propia propagación y supervivencia. En el caso del ántrax, ese mecanismo de adaptación puede ser a través de señales alteradas que bloquean la capacidad del huésped para sentir el dolor y, por lo tanto, la presencia del microbio. Esta hipótesis podría ayudar a explicar por qué las lesiones cutáneas negras que a veces forma la bacteria del ántrax son notablemente indoloras”, completó Chiu. Los nuevos hallazgos también apuntan a nuevas vías para el desarrollo de fármacos más allá de las terapias tradicionales de moléculas pequeñas que actualmente se están diseñando en los laboratorios. “Traer una terapia bacteriana para tratar el dolor plantea la pregunta: ¿Podemos extraer analgésicos del mundo natural y microbiano? Hacerlo puede aumentarla diversidad de los tipos de sustancias que rastreamos en busca de soluciones”, concluyó Chu.

Research suggests role for anthrax in fighting pain

Animal findings could inform search for opioid alternatives

Researchers at Harvard Medical School have repurposed anthrax, a bacterial toxin known for its lethal effects, into a potent pain blocker that could someday serve as an alternative to drugs with addictive side effects. The work is described in a new paper in Nature Neuroscience.

Collaborating with other institutions and industry, the lab of Associate Professor of Immunology Isaac Chiu found that injecting anthrax toxin into the nervous system selectively quieted pain fibers and provided a novel way to target pain. The Gazette spoke with Chiu about the research, which has not yet been tested in human trials. The interview has been edited for clarity and length.

GAZETTE: It seems counterintuitive that anthrax — a toxin that causes deadly disease — might also be a painkiller. Was that what you set out to study or was it something you came upon as you were studying something else?

CHIU: Pain is a major area of research because, while acute pain can warn us of something that’s damaging, chronic pain arises in inflammatory diseases and conditions that affect the nervous system and is not necessarily good for us. Many of the conditions that cause chronic pain are very hard to treat, so we need to develop new ways of targeting pain circuits in the brain as well as in the body’s periphery. We mined gene-expression data which we and others have collected on pain fibers and many other types of neurons. My lab is focused on how microbes interact with neurons. We were looking at what microbe-related genes pain fibers expressed that other neurons don’t, and one gene stood out, which is the receptor for anthrax toxin. It was not like we were looking for anthrax receptors, but that’s the one that popped out.

GAZETTE: What diseases is this chronic pain associated with?

CHIU: Chronic inflammatory pain arises as a result of inflammation in tissues, which includes diseases like rheumatoid arthritis, osteoarthritis, cancer, and inflammatory bowel disease. The second category is neuropathic pain, meaning that it arises due to damage to the nerves. That could be a result of an injury or it could also result from things like chemotherapy-induced neuropathy. (This is a big problem for cancer patients — they often stop taking chemotherapies because they’re in so much pain.) Another cause is diabetes, which leads to nerve damage. In mouse models of inflammatory and neuropathic pain, we found that the anthrax toxin was able to block pain.

GAZETTE: You talked about the need for new painkillers — are you thinking about opioids and their impact on society?

CHIU: Not specifically, but in the field of pain research, this is very important. The opioid crisis is still a major problem and finding solutions to develop non-opioid analgesics is a top priority of the National Institutes of Health. Chronic pain affects about 50 million Americans. The numbers are sobering and there is a need for better treatments. Opioids can be effective at blocking pain, but the problem is that they also have off-target effects. The reason is that the receptors for opioids are not just in pain fibers, they also act on regions of the brain that mediate breathing and reward. That’s why there’s a problem with opioid painkillers: they’re addictive and, if they cause a blockade of breathing circuits, lethal. We need to find molecular targets that can block pain that are not going to cause addiction and not cause off-target effects.

GAZETTE: Are the receptors for anthrax toxin indeed very specific to the pain fibers?

CHIU: One of the things that we were struck by is that the high-affinity receptor for anthrax toxin, if you compare across the brain and across the nervous system, seems to be highly expressed in pain fibers, but absent in brain or spinal cord neurons. I have to qualify this — the receptors are also expressed in many non-neuronal cells. That’s why anthrax is lethal in humans: it will target blood vessels, it will target the liver. But in our study, we were able to largely limit it to pain fibers by injecting the toxin only into the nervous system, between the vertebrae in the spine.

GAZETTE: We should highlight that this research is in an early stage, and that part of the remaining work is addressing safety issues in a way that would be practical in the clinic.

CHIU: Yes, and all of the work so far is preclinical, in mouse models. To even get close to clinical application, safety is a big part of it. There are some potential ways of getting at it, though. Like I mentioned, through injection into the spine or cerebrospinal fluid, we could limit it to the nervous system. Another way is to engineer the toxin to deliver different cargoes, and if we make that cargo also more specific to neurons, that could also allow it to be safer.

GAZETTE: That was another part of your work. You used anthrax proteins to create essentially a cargo hold for botulinum toxin, and then delivered that precisely where you wanted it. How did you get that idea? And is botulinum for some reason a better analgesic than anthrax?

CHIU: Botulinum toxin is also a bacterial toxin that targets neurons. Botulism, which is caused by C. botulinum, is due to botulinum toxins binding to nerve terminals and silencing the neurotransmission of the nerves to the muscles. Botulinum toxins are already used widely for cosmetic use and treatment of diseases, but practitioners are very careful to inject it locally so it doesn’t have safety issues. Now, the cargo idea — we’re not the first, and in fact, we were building off many other labs’ work, including some of our collaborators: Steve Leppla’s lab at NIH and Brad Pentelute’s lab at MIT, where they decided to use the anthrax system to target tumors.

In that case, they took advantage of the fact that the anthrax system is a two-component system. There’s an A part and a B part, and the A part targets the receptor, while the B part is what the A part delivers into the cell. They’ve engineered the B part to deliver things to kill the tumor. In our case, we thought, “Can we engineer the B part to deliver something that can silence neurons?” Botulinum toxin came to mind. So we take advantage of two different bacterial toxins and combine them into one system.

GAZETTE: So it shuts off signaling after the point of injection?

CHIU: That’s right. The pain fiber can no longer transmit signals to the next neuron in the spinal cord. Now, botulinum toxin itself can block pain; the only thing is that it’s not specific for pain fibers. That same toxin will actually bind to motor neurons and paralyze your face. Here, we’re making it so that it is more specific to pain fibers. We actually show in our paper that our combination toxin does not affect neuromuscular junction signaling. What we’re excited about is that, with protein engineering, we can think about other molecules besides botulinum toxin to put into pain fibers with the same system.

GAZETTE: Why would a microbe that we view as being disease-causing have these abilities?

CHIU: There are advantages for microbes sometimes to exploit or hijack pathways in hosts. This is all very speculative, but one potential thing would be by blocking pain, they’re going to spread more efficiently. Anthrax is an environmental microbe and when livestock get infected with cutaneous anthrax, they form these coal-like lesions that are painless. Maybe this helps the bacteria get from one host to the next host. Our lab has been interested in these sorts of interactions of microbes and hosts. Tuberculosis, for example, has a molecule that can activate neurons to induce cough that could allow its spread. We don’t know for sure why the anthrax bacteria blocks pain, but it could be advantageous for its survival on the host or its spread to the next host.

GAZETTE: What happens next?

CHIU: There are a few outstanding questions. On the basic side, we know that one of the specific anthrax toxins, the edema toxin, seems to block pain when given to mice, and part of that mechanism is that it seems to silence neurotransmission from pain fibers. We still need to figure out what’s happening at a molecular level in the neuron that leads to the very potent pain block. Next we need to optimize safety and maybe go to other animal models, and then potentially bring this forward into humans. We can also optimize the cargo. Is botulinum toxin the cargo that will go forward? Are there other ones that are even more efficacious to target neurons? Another thing that I’m interested in is whether we can engineer the system so that it targets other neurons. Right now, it’s very specific for pain fibers, but can we engineer it to go after neurons in the brain that degenerate, like in Alzheimer’s or Parkinson’s?

Kris Snibbe/Harvard Staff Photographer